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What is a Causal Effect?

Yi (1)− Yi (0)

where Yi (1) = Yi (Ti = 1) for some treatment variable T .

Yi (1) and Yi (0) are potential outcomes in that they represent the
outcomes for individual i had they received the treatment or
control respectively.

The fundamental problem of causal inference is that only one
of Yi (1) and Yi (0) is observed, so we can never find the true
causal effect.

The approach we will discuss is known as the Rubin Causal Model.



Instead of the individual treatment effect, we might be interested
in the average treatment effect (ATE):

E [Y (1)− Y (0)] = E [Y (1)]− E [Y (0)]

We cannot find the ATE because of the unobserved potential
outcomes.

We might also be interested in the average treatment effect on
the treated (ATT):

E [Y (1|T = 1)− Y (0|T = 1)] = E [Yt(1)− Yt(0)]

We cannot find the ATT because of unobserved potential
outcomes.



Causal Inference as Missing Data Problem

i Ti Yi (0) Yi (1) Yi (1)− Yi (0)

1 0 3 5 2
2 1 2 5 3
3 1 5 4 -1
4 0 2 7 5
5 1 1 2 1

Some potential outcomes are unobserved, as are the ATE and ATT.

ATE = 2

ATT = 1



Estimating ATE

We can estimate the ATE in the following way:

ˆATE = E [Yt(1)− Yc(0)]

= E [Yt(1)]− E [Yc(0)]

Both quantities are observed.

We basically find the average Y for observations that received
treatment and average Y for observations that received control.

What assumptions do we need for this estimate to be unbiased?

I SUTVA

I unconfoundedness/ignorability



Stable Unit Treatment Value Assumption

The stable unit treatment value assumption (SUTVA)
assumes that

I the treatment status of any unit does not affect the potential
outcomes of the other units (non-interference)

I the treatments for all units are comparable (no variation in
treatment)

Violations:

I Job training for too many people may flood the market with
qualified job applicants (interference)

I Some patients get extra-strength aspirin (variation in
treatment)



Ignorability/Unconfoundedness

Unconfoundedness (strong ignorability):

(Y (1),Y (0))⊥T

Treatment assignment is independent of the outcomes (Y ).

Ignorability and Unconfoundedness are often used interchangeably.
Technically, unconfoundedness is a stronger assumption. Most
people just say ignorability.

Violations:

I Omitted Variable Bias



Classical Randomized Experiment

The gold standard of scientific research.

1. Randomly sample units from population.

2. Randomly assign treatment and control to the units.

3. Estimate ATE.

SUTVA: can theoretically control for treatment variation and
non-interference

Ignorability: controlled for by random treatment assignment



Possible problems:

I Compliance to treatment assignment:
I Never-taker: Unit never takes treatment
I Always-taker: Unit always takes treatment
I Complier: Unit takes treatment when assigned and control

when not assigned
I Defier: Unit takes treatment when not assigned and control

when assigned

I Unlucky random treatment assignment violates ignorability
I Problem goes away as sample size gets large.



Observational Data

We have a dataset where we only observe after the experiment
occurred and we have no control over treatment assignment.

This is the case with most of the sciences.

1. Gather dataset.

2. Estimate ATE or ATT with a model.

SUTVA: assumed (a problematic assumption most of the time)

Ignorability: include covariates to get conditional ignorability

(Y (1),Y (0))⊥T |X

Treatment assignment is independent of the outcomes (Y ) given
covariates X .



Problems:

I SUTVA assumption

I Omitted variable bias
I Don’t include all the variables that makes treatment

assignment independent of Y .

I Model Dependence
I We try to alleviate the curse of dimensionality and problem of

continuous covariates by specifying a model.
I Estimates of ATE or ATT may differ depending on the model

you specify.



Matching to Ameliorate Model Dependence

If we had pairs of observations that had the exact same covariate
values (perfect balance) and differed only on treatment
assignment, then we would have perfect conditional ignorability
(assuming no omitted variable bias).

Then we will get the same results regardless of the model.

Matching is a method of trying to achieve better balance on
covariates and reduce model dependence.

Goal: BALANCE on covariates



Matching on Propensity Scores

Suppose each observation has some true probability of receiving
the treatment.

I A doctor examines a patient and has a probability of giving the
patient a drug, depending on the patient’s age, health, etc.

The probability of receiving the treatment is the propensity score.

We don’t know the true propensity score but we can estimate it for
each observation with a regression of T on X (assuming we have
the right set of X that went into the decision for assigning
treatment).

Then we match an observation that received treatment with an
observation with a similar propensity score that received control.

Since we don’t have the true propensity scores, we need to check
for balance on our covariates at the end.



Other Matching Algorithms

Matching on propensity scores is only one way of matching.

Other ways include:

I Matching on Mahalanobis distances

I Genetic Matching

I Coarsened Exact Matching (CEM)



Instrumental Variables

Goal: Estimate Causal Effects

Problem in Observational Data: Non-ignorability of treatment
assignment (and SUTVA)

Solution so far: Include covariates and match

Another solution: Instrumental Variables

The idea: Find an instrument Z that is randomly assigned (or
assignment is ignorable) and that affects Y only through T .

Example: Y = post-Vietnam War civilian mortality; T = serving
in the military during Vietnam War; Z = draft lottery



The Potential Outcomes Approach
Assumptions:

1. SUTVA: Zi does not affect Tj and Yj and Ti does not affect
Yj for all i 6= j (non-interference) and there is no variation in
the treatment or the instrument.

Figure: SUTVA Assumption implies absence of dotted arrows.
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Example: The veteran status of any man at risk of being drafted in the lottery was not affected by the

draft status of others at risk of being drafted, and, similarly, that the civilian mortality of any such man

was not affected by the draft status of others.



2. Random (Ignorable) Assignment of the Instrument Z
Example: Assignment of draft status was random.

3. Exclusion Restriction: Any effect of Z on Y must be via an
effect of Z on T .

Figure: Exclusion assumption implies absence of dotted arrow.
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Example: Civilian mortality risk was not affected by draft status once veteran status is taken into account.

4. Nonzero Average Causal Effect of Z on T .
Example: Having a low lottery number increases the average probability of service.

5. Monotonicity: No Defiers
Example: There is no one who would have served if given a high lottery number, but not if given a low

lottery number.



If all the assumptions hold, then the Local Average Treatment
Effect (LATE) of T on Y is

LATE =
Effect of Z on Y
Effect of Z on T

It is only a local average treatment effect because it’s the effect of
T on Y for the subpopulation of compliers, and not the whole
population.



Angrist, Joshua D., Guido W. Imbens and Donald B. Rubin. 1996.
“Identification of Causal Effects Using Instrumental Variables.”
Journal of the American Statistical Association 91(434):444-455.

Describes instrumental variables in more detail and compares it to
the econometric treatment.


