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Maximum Likelihood

Suppose we have some data y and we want to find some
parameters θ that generated y .

Maximum likelihood is a way to find θ.



Derived from Bayes’ Rule

Assume that y follows some distribution p(y |θ).

p(θ|y) =
p(y |θ)p(θ)

p(y)

p(θ|y) = p(y |θ)k(y)

p(θ|y) ∝ p(y |θ)

L(θ|y) = p(y |θ)

The likelihood function is mathematically the same as the
distribution for y .

Our best estimate of θ (MLE) is the value of θ that maximizes the
likelihood function. Why? and why?



Why Does L(θ|y) = p(y |θ) work?

Suppose we have one observation y = 0.5 (assumed to be) drawn
from a Normal distribution with σ2 = 1.

Estimate the mean µ of the distribution.

Obvious guess: µ = 0.5
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Our best estimate of θ is the value of θ that maximizes L(θ|y)
(MLE).



Example: Poisson Distribution

Suppose we have some count data (number of coups in a year).

We can use a Poisson distribution to model the data (we will learn
more about Poisson later).

Yi ∼iid Poisson(λ)

We want to find λ, which is the mean of the Poisson distribution.

The PMF (discrete) for the data is

p(y|λ) =
n∏

i=1

λyi e−λ

yi !



Since L(θ|y) = p(y |θ), we have

L(λ|y) =
n∏

i=1

λyi e−λ

yi !

To make the math easier, we will take the log-likelihood.

l(λ|y) =
n∑

i=1

(yi lnλ− λ− ln yi !)

We can drop all terms that don’t depend on λ (because likelihood
is a relative concept and is invariant to shifts).

l(λ|y) =
n∑

i=1

(yi lnλ)− nλ



Why Can We Use the Log-likelihood?
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Finding the Maximum Likelihood Estimate (MLE)

Remember that to find our MLE, we want to find the value of the
parameter(s) that maximizes our log-likelihood.

l(λ|y) =
n∑

i=1

(yi lnλ)− nλ

We need to set the derivative (known as the score function) to
zero and solve for λ.

∂l(λ|y)

∂λ
= S(θ) =

∑n
i=1 yi

λ
− n

0 =

∑n
i=1 yi

λ
− n

λ̂ =

∑n
i=1 yi

n



Maximum Likelihood In R

Write our log-likelihood function:

l(λ|y) =
n∑

i=1

(yi lnλ)− nλ

> ll.poisson <- function(par, y) {

+ lambda <- exp(par)

+ out <- sum(y * log(lambda)) - length(y) * lambda

+ return(out)

+ }

Find the maximum (with sample data)
> y <- rpois(1000, 5)

> opt <- optim(par = 2, fn = ll.poisson, method = "BFGS", control = list(fnscale = -1),

+ y = y)$par

> mle <- exp(opt)

> mle

[1] 4.954001

What the exp()?



Reparameterization

We need to reparameterize the parameters in our function to
constrain the search space.

We also need to reparameterize the output from optim().

Likelihood is invariant to reparameterization.

Common reparameterizations:

I To constrain to positive space: exp()

I To constrain to [0, 1], use a cdf



Cumulative Distribution Function

We’ve learned how to define a distribution via is PDF or PMF f(x).

Every distribution also has a CDF F(x): P(X ≤ x)

For discrete case:

F (x) = P(X ≤ x) =
∑
xi≤x

P(X = xi )

For continuous case:

F (x) =

∫ x

−∞
f (t)dt



Standard Normal PDF and CDF
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Poisson(5) PMF and CDF
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We can use a CDF to transform numbers from (−∞,∞) to [0, 1].

Commonly used:

I Standard Normal CDF: Φ(·)
I Logistic CDF: 1

1+e−x

Why shouldn’t we use a CDF of a discrete variable?

What about the CDF of a bounded variable?



More Complicated Likelihoods

Up to this point, our distributions have been relatively simple (i.e.
all observations are i.i.d. from a distribution with the same
parameter).

Suppose our observations come from different distributions, or
some observations are not fully observed.

How do we define the joint distribution for our data (and thus our
likelihood)?

Use an indicator variable.



Indicator Variable

Let D be an indicator variable such that di = 1 if i follows one
distribution, and di = 0 if i follows another distribution.

We can incorporate the indicator variable into our likelihood.



Example 1

Suppose that we have 5 observations. The first 2 are assumed to
be from distribution 1. The last 3 are assumed to be from
distribution 2.

d = c(1, 1, 0, 0, 0)

p(θ1, θ2|y) =
n∏

i=1

[p(yi |θ1)]
di [p(yi |θ2)]

1−di



Example 2

Suppose that we have 5 observations. We observe the first 2
observations completely, but we only observe that the last 3 are
greater than some number z .

d = c(1, 1, 0, 0, 0)

p(θ|y) =
n∏

i=1

[p(yi |θ)]di [1− F (z)]1−di

where F (y) is the CDF for p(y |θ). Remember

F (z) = P(Y ≤ z)


