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Most Basic Definition of Probability:

number of successes
number of possible occurrences



Three Axioms of Probability

Let S be the sample space and A be an event in S .

1. For any event A, P(A) ≥ 0.

2. P(S) = 1.

3. If A1,A2, . . . ,An are mutually disjoint, then

P(A1 ∪ A2 ∪ · · · ∪ An) = P(A1) + P(A2) + · · ·+ P(An)

The three axioms imply:

I P(∅) = 0

I P(Ac) = 1− P(A)

I For any event A, 0 ≤ P(A) ≤ 1.

I If A ⊂ B, then P(A) ≤ P(B).

I For any two events A and B,
P(A ∪ B) = P(A) + P(B)− P(A ∩ B).



Conditional Probability

P(A|B) =
P(A ∩ B)

P(B)

Multiplicative Law of Probability:

P(A ∩ B) = P(B|A)P(A) = P(A|B)P(B)

Bayes’ Rule:

P(A|B) =
P(B|A)P(A)

P(B)

Law of Total Probability:

P(B) =
n∑

i=1

P(B|Ai )P(Ai )



Independence

A and B are independent if

P(AB) = P(A)P(B)

If A and B are independent, then

P(A|B) =
P(AB)

P(B)

=
P(A)P(B)

P(B)

= P(A)

Conditional Independence:

P(AB|C ) = P(A|C )P(B|C )
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Random Variables

A random variable is a function that takes a random experiment
and assigns a number to the outcome of the experiment.

Outcome values are assigned probabilities by a probability mass
function (for discrete RV) or probability density function (for
continuous RV).



Probability Mass Function

P(Y = y)
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Probability Density Function

P(Y ∈ A) =

∫
A

f (y)dy
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Characteristics of all PDFs and PMFs:

I Area under the curve must integrate to 1

I P(Y = y) ≥ 0 for all Y

I The support is all y’s where P(Y = y) > 0.



Marginal, Conditional, and Joint Densities

f (x) =

∫
f (x , y)dy

f (x , y) =

∫
f (x , y , z)dz

f (x |y) =
f (x , y)

f (y)

f (x |y , z) =
f (x , y , z)

f (y , z)

f (x , y) = f (x |y)f (y)

= f (y |x)f (x)

f (x , y , z) = f (x |y , z)f (y |z)f (z)



Expectation

Discrete Case:

E (X ) =
∑

i

xiP(X = xi )

where P(X = x) is the probability mass function (PMF).

Continuous Case:

E (X ) =

∫ ∞

−∞
xf (x)dx

where f (x) is the probability density function (PDF).



Expectation of a Function of a Random Variable

E [g(X )] =
∑

i

g(xi )P(X = xi )

for discrete random variables and

E [g(X )] =

∫ ∞

−∞
g(x)f (x)dx

for continuous random variables.



Variance

Var(X ) = E [(X − E (X ))2]

Var(X ) = E [(X − E (X ))2]

= E [X 2 − 2XE (X ) + (E (X ))2]

= E (X 2)− 2E (X )E [E (X )] + E ([E (X )]2)

= E (X 2)− 2[E (X )]2 + [E (X )]2

= E(X2)− [E(X)]2
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Monte Carlo Simulation

All the simulations we will be doing in class is what we call Monte
Carlo simulation.

Fancy way of saying we will simulate random draws to calculate
quantities of interest.



Simulating from a Random Variable
Suppose we have a random variable X that follows a Beta(α, β)
distribution.
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f (x |α, β) =
Γ(α + β)

Γ(α)Γ(β)
x (α−1)(1− x)(β−1)



Let α = 2 and β = 3. Find E (X ).

E (X ) =

∫ 1

0
xf (x)dx

=

∫ 1

0
x

Γ(α + β)

Γ(α)Γ(β)
x (α−1)(1− x)(β−1)

=

∫ 1

0
x

Γ(2 + 3)

Γ(2)Γ(3)
x (2−1)(1− x)(3−1)dx

We can ask R to help us integrate.

> ex.beta.func <- function(x, alpha, beta) {

+ x * gamma(alpha + beta)/(gamma(alpha) * gamma(beta)) * x^(alpha -

+ 1) * (1 - x)^(beta - 1)

+ }

> e.x <- integrate(Vectorize(ex.beta.func), lower = 0, upper = 1,

+ alpha = 2, beta = 3)$value

> e.x

[1] 0.4



Or we can use simulation, which is much easier.

> x.draws <- rbeta(10000, shape1 = 2, shape2 = 3)

> sim.e.x <- mean(x.draws)

> sim.e.x

[1] 0.3987049

We can find all kinds of quantities of interest (variance, quantiles,
etc.) by just doing it on the simulated draws rather than doing
complicated integrals.

Why does this work?



Monte Carlo Integration
What we just did was called Monte Carlo Integration, which
means exactly what it sounds like (doing integrals via Monte Carlo
simulation).

If we need to take an integral of the following form:

I =

∫
g(x)p(x)dx

Monte Carlo Integration allows us to approximate it by simulating
M values from f (x) and calculating:

ÎM =
1

M

M∑
i=1

g(x (i))

By the Strong Law of Large Numbers, our estimate ÎM is a
simulation consistent estimator of I as M →∞ (our estimate gets
better as we increase the number of simulations).



Let Y be another random variable where Y = eX . Find E (Y ).

E (Y ) =

∫ 1

0
ex Γ(2 + 3)

Γ(2)Γ(3)
x (2−1)(1− x)(3−1)dx

Via simulation:

> e.y <- mean(exp(x.draws))

> e.y

[1] 1.520348

Note that E (g(X )) 6= g(E (X )). In fact, E (g(X )) ≥ g(E (X )) by
Jensen’s Inequality.

Monte Carlo Integration tells us we need E (g(X )).



Take home point:

If we can somehow generate random draws from the distribution of
a random variable, we can calculate complicated integrals (mean,
variance, functions of RV) easily by simulation.

This seems trivial but is one of the foundations of statistics,
especially Bayesian statistics.



Simulating Probability Problems

A related application of simulation is to help us solve probability
problems.

General idea:

1. Suppose we have an experiment where we want to know the
probability of success. Simulate from the population many
times.

2. For each simulation, conduct the experiment and see whether
there is success.

3. The proportion of simulations that achieve success is the
probability of success.



An Example
Suppose we have two urns containing marbles. The first urn contains 6
red marbles and 4 green marbles and the second urn contains 9 red
marbles and 1 green marble. Take one marble from the first urn (without
looking at it) and put it in the second urn. Then take one marble from
the second urn (again without looking at it) and put it in the first urn.
What is the probability of now drawing a red marble from the first urn?

> urn.func <- function(n.sims, urn1, urn2) {

+ final.draws <- c()

+ for (i in 1:n.sims) {

+ draw1 <- sample(urn1, 1)

+ draw2 <- sample(c(urn2, draw1), 1)

+ final.draws[i] <- sample(c(urn1, draw2), 1)

+ }

+ prob <- mean(final.draws)

+ return(prob)

+ }

> urn.func(n.sims = 10000, urn1 = c(rep(1, 6), rep(0, 4)), urn2 = c(rep(1,

+ 9), 0))

[1] 0.6293

„
6

10

« „
10

11

« „
6

10

«
+

„
6

10

« „
1

11

« „
5

10

«
+

„
4

10

« „
9

11

« „
7

10

«
+

„
4

10

« „
2

11

« „
6

10

«
≈ 0.63



Another Example
Suppose we have two urns containing marbles. The first urn contains
10− g red marbles and g green marbles and the second urn contains 9
red marbles and 1 green marble. Take one marble from the first urn
(without looking at it) and put it in the second urn. Then take one
marble from the second urn (again without looking at it) and put it in
the first urn. What is the minimum g such that the probability of now
drawing a red marble is less than 0.5?

> urn.func2 <- function(n.sims, urn2, p) {

+ final.draws <- c()

+ g <- 0

+ urn1 <- c(rep(1, 10 - g), rep(0, g))

+ prob <- 1

+ while (prob >= p) {

+ for (i in 1:n.sims) {

+ draw1 <- sample(urn1, 1)

+ draw2 <- sample(c(urn2, draw1), 1)

+ final.draws[i] <- sample(c(urn1, draw2), 1)

+ }

+ prob <- mean(final.draws)

+ g <- g + 1

+ urn1 <- c(rep(1, 10 - g), rep(0, g))

+ }

+ g <- g - 1

+ return(g)

+ }

> urn.func2(1000, urn2 = c(rep(1, 9), 0), p = 0.5)

[1] 6
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The Bernoulli Distribution

Y ∼ Bernoulli(π)

y = 0, 1

probability of success: π ∈ [0, 1]

p(y |π) = πy (1− π)(1−y)

E (Y ) = π

Var(Y ) = π(1− π)
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The Binomial Distribution

Y ∼ Binomial(n, π)

y = 0, 1, . . . , n

number of trials: n ∈ {1, 2, . . . }
probability of success: π ∈ [0, 1]

p(y |π) =
(n
y

)
πy (1− π)(n−y)

E (Y ) = nπ

Var(Y ) = nπ(1− π)
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The Multinomial Distribution

Y ∼ Multinomial(n, π1, . . . , πk)

yj = 0, 1, . . . , n;
∑k

j=1 yj = n

number of trials: n ∈ {1, 2, . . . }
probability of success for j : πj ∈ [0, 1];

∑k
j=1 πj = 1

p(y|n,π) = n!
y1!y2!...yk !π

y1
1 πy2

2 . . . πyk
k

E (Yj) = nπj

Var(Yj) = nπj(1− πj)

Cov(Yi ,Yj) = −nπiπj



The Poisson Distribution

Y ∼ Poisson(λ)

y = 0, 1, . . .

expected number of
occurrences: λ > 0

p(y |λ) = e−λλy

y !

E (Y ) = λ

Var(Y ) = λ
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The Geometric Distribution

How many Bernoulli trials until success?

Y ∼ Geometric(π)

y = 1, 2, 3, . . .

probability of success: π ∈ [0, 1]

p(y |π) = (1− π)(y−1)π

E (Y ) = 1
π

Var(Y ) = 1−π
π2
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The Univariate Normal Distribution

Y ∼ Normal(µ, σ2)

y ∈ R

mean: µ ∈ R
variance: σ2 > 0

p(y |µ, σ2) =
exp

„
− (y−µ)2

2σ2

«
σ
√

2π

E (Y ) = µ

Var(Y ) = σ2
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The Multivariate Normal Distribution

Y ∼ N (µ,Σ)

y ∈ Rk

mean vector: µ ∈ Rk

variance-covariance matrix: Σ positive definite k × k matrix

p(y|µ,π) = (2π)−k/2|Σ|−1/2 exp
(
−1

2(y − µ)′Σ−1(y − µ)
)

E (Y ) = µ

Var(Y ) = Σ



The Uniform Distribution

Y ∼ Uniform(α, β)

y ∈ [α, β]

Interval: [α, β]; β > α

p(y |α, β) = 1
β−α

E (Y ) = α+β
2

Var(Y ) = (β−α)2

12



The Beta Distribution

Y ∼ Beta(α, β)

y ∈ [0, 1]

shape parameters:
α > 0; β > 0

p(y |α, β) =
Γ(α+β)
Γ(α)Γ(β)y

(α−1)(1− y)(β−1)

E (Y ) = α
α+β

Var(Y ) = αβ
(α+β)2)α+β+1)
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The Gamma Distribution

Y ∼ Gamma(α, β)

y > 0

shape parameter: α > 0
inverse scale parameter: β > 0

p(y |α, β) =
βα

Γ(α)y
(α−1) exp (−βy)

E (Y ) = α
β

Var(Y ) = α
β2
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The Inverse Gamma Distribution

Distribution of the Inverse of a Gamma Distribution: If X ∼
Gamma(α, β), then 1

X ∼ Invgamma(α, β).

Y ∼ Invgamma(α, β)

y > 0

shape parameter: α > 0
scale parameter: β > 0

p(y |α, β) = βα

Γ(α)y
−(α+1)e−

β
y

E (Y ) = β
α−1 for α > 1

Var(Y ) = β2

(α−1)2(α−2)
for α > 2
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The Dirichlet Distribution

Y ∼ Dirichlet(α1, . . . , αk)

yj ∈ [0, 1];
∑k

j=1 yj = 1

α parameters: αj > 0;
∑k

j=1 αj ≡ α0

p(y|α) = Γ(α1+···+αk )
Γ(α1)...Γ(αk) yα1−1

1 . . . yαk−1
k

E (Yj) =
αj

α0

Var(Yj) =
αj (α0−αj )

α2
0(α0+1)

Cov(Yi ,Yj) = − αiαj

α2
0(α0+1)
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