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Inverse CDF Method

Suppose we want to sample from some continuous distribution
f (x), but we only know the CDF F (x) and we are unable to take
derivatives.

We can sample from f (x) if we can sample from a Uniform(0,1)
distribution and know the inverse CDF F−1(u), where

F (x) = u

F−1(u) = x

Repeat the following two steps m times:

1. Draw a random value from the Uniform(0,1) distribution. Call
this value u.

2. Compute F−1(u) to get a value x . x is a draw from f (x).



An Example

Suppose our target density (the one we want to sample from) is
the triangle density:

f (x) =


8x if 0 ≤ x < 0.25
8
3 −

8
3x if 0.25 ≤ x ≤ 1

0 otherwise

Now suppose we didn’t know f (x), but we did know the CDF F(x):

F (x) =


0 if x < 0
4x2 if 0 ≤ x < 0.25
8
3x − 4

3x2 − 1
3 if 0.25 ≤ x ≤ 1

1 if x > 1

If we stick in a value of x into F (x), we get some value u in the
interval [0,1] (which corresponds to P(X ≤ x)).



Now we need to find F−1(u) such that if we stick in a value of u,
we get the corresponding x value.

To do so, we simply set F (x) = u and solve for x .

F−1(u) =

{ √
u

2 if 0 ≤ u < 0.25

1−
√

3(1−u)

2 if 0.25 ≤ u ≤ 1

For this problem, F−1(u) has a restricted domain of [0, 1] because
there are no solutions for u /∈ [0, 1]. Since u is drawn from the
Uniform(0,1) distribution, we do not have to worry about it.

Now we can sample using the inverse cdf method.



1. Draw m random values from the Uniform(0,1) distribution.
Call these values u.

> m <- 10000

> u <- runif(m, 0, 1)

2. Compute F−1(u) to get values of x. The values in x are draws
from f (x).

> invcdf.func <- function(u) {

+ if (u >= 0 && u < 0.25)

+ sqrt(u)/2

+ else if (u >= 0.25 && u <= 1)

+ 1 - sqrt(3 * (1 - u))/2

+ }

> x <- unlist(lapply(u, invcdf.func))



We can compare the density of our draws to the target density
f (x).
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Why Does It Work?

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

PDF

x

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF

x
P

ro
ba

bi
lit

y 
(a

ls
o 

u)

The areas with more density on the PDF (for example, the interval
[0.2,0.4]) have a steeper“slope”on the CDF, so they cover more of
the [0,1] space of u, and thus will be drawn more often.
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Rejection Sampling

Suppose again that we want to sample from our target density
f (x), which in our example is the triangle density.

For the rejection sampling, we need to pick a candidate density
g(x) such that f (x) ≤ Mg(x) for all x , where M is a constant.

Repeat the following steps until we get m accepted draws:

1. Draw a candidate xc from g(x).

2. Calculate an acceptance probability α for xc .

α =
f (xc)

Mg(xc)

3. Draw a value u from the Uniform(0,1) distribution.

4. Accept xc as a draw from f (x) if α ≥ u. Otherwise, reject xc

and go back to step 1.



An Example

Target Density f (x) (the triangle density):

> f.x <- function(x) {

+ if (x >= 0 && x < 0.25)

+ 8 * x

+ else if (x >= 0.25 && x <= 1)

+ 8/3 - 8 * x/3

+ else 0

+ }

For our candidate density g(x), let’s use the Uniform(0,1) density:

> g.x <- function(x) {

+ if (x >= 0 && x <= 1)

+ 1

+ else 0

+ }

Let’s set M = 3 because I know from guess and check that f (x) is
never greater than Mg(x), which is 3 for all x ∈ [0, 1].

> M <- 3



0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

x

D
en

si
ty

f(x)
Mg(x)



Let’s do rejection sampling!

1. Draw a candidate xc from g(x).

2. Calculate an acceptance probability α = f (xc)
Mg(xc )

for xc .

3. Draw a value u from the Uniform(0,1) distribution.

4. Accept xc as a draw from f (x) if α ≥ u. Otherwise, reject xc

and go back to step 1.

> m <- 10000

> n.draws <- 0

> draws <- c()

> x.grid <- seq(0, 1, by = 0.01)

> while (n.draws < m) {

+ x.c <- runif(1, 0, 1)

+ accept.prob <- f.x(x.c)/(M * g.x(x.c))

+ u <- runif(1, 0, 1)

+ if (accept.prob >= u) {

+ draws <- c(draws, x.c)

+ n.draws <- n.draws + 1

+ }

+ }
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Why Does It Work?
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The difference between f (x) and Mg(x) at places with higher
density (i.e. around x = 0.25) is smaller than at places with lower
density (i.e. around x = 0.8), so the acceptance probability at
x = 0.25 is higher and more draws of x = 0.25 are accepted.



There are an infinite number of candidate densities g(x) and
constants M that we can use.

The only difference between them is computation time.

If g(x) is significantly different in shape than f (x) or if Mg(x) is
significantly greater than f (x), then more of our candidate draws
will be rejected.

If f (x) = Mg(x), then all our draws will be accepted.

A version of rejection sampling forms the basis for the
Metropolis-Hastings algorithm that we will use later to sample
from (possibly multivariate) posteriors without knowing the
normalizing constant.


	Inverse CDF Method
	Rejection Sampling

