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Inverse CDF Method

Suppose we want to sample from some continuous distribution
f(x), but we only know the CDF F(x) and we are unable to take
derivatives.

We can sample from f(x) if we can sample from a Uniform(0,1)
distribution and know the inverse CDF F~1(u), where

F(x) =
F_l(u) = X

Repeat the following two steps m times:

1. Draw a random value from the Uniform(0,1) distribution. Call
this value u.

2. Compute F~1(u) to get a value x. x is a draw from f(x).



An Example

Suppose our target density (the one we want to sample from) is
the triangle density:

8x if 0 <x<0.25
f(x)=¢ §-58x if025<x<1
0 otherwise

Now suppose we didn't know f(x), but we did know the CDF F(x):

0 if x<0

Fix) = 4x? if 0 < x <0.25
gx—%x2—% if0.25<x<1
1 if x>1

If we stick in a value of x into F(x), we get some value u in the
interval [0,1] (which corresponds to P(X < x)).



Now we need to find F~1(u) such that if we stick in a value of v,
we get the corresponding x value.

To do so, we simply set F(x) = u and solve for x.

Fl) - {{ if 0 <u<025

V309 025 <u<

For this problem, F~1(u) has a restricted domain of [0, 1] because
there are no solutions for u ¢ [0, 1]. Since u is drawn from the
Uniform(0,1) distribution, we do not have to worry about it.

Now we can sample using the inverse cdf method.



Draw m random values from the Uniform(0,1) distribution.
Call these values u.

> m <- 10000
> u <- runif(m, 0, 1)

Compute F~1(u) to get values of x. The values in x are draws
from f(x).

> invedf.func <- function(u) {

+ if (u >= 0 && u < 0.25)

+ sqrt(u)/2

+ else if (u >= 0.25 && u <= 1)
+ 1 - sqrt(3 * (1 - u))/2

+ 7}

> x <- unlist(lapply(u, invcdf.func))



We can compare the density of our draws to the target density
f(x).
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Why Does It Work?
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The areas with more density on the PDF (for example, the interval
[0.2,0.4]) have a steeper "slope” on the CDF, so they cover more of
the [0,1] space of u, and thus will be drawn more often.
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Rejection Sampling

Suppose again that we want to sample from our target density
f(x), which in our example is the triangle density.

For the rejection sampling, we need to pick a candidate density
g(x) such that f(x) < Mg(x) for all x, where M is a constant.

Repeat the following steps until we get m accepted draws:
1. Draw a candidate x. from g(x).

2. Calculate an acceptance probability o for x..

f(xc)
Mg (xc)

o=

3. Draw a value u from the Uniform(0,1) distribution.

4. Accept x. as a draw from f(x) if @ > u. Otherwise, reject xc
and go back to step 1.



An Example

Target Density f(x) (the triangle density):

> f.x <- function(x) {

+ if (x >= 0 && x < 0.25)

+ 8 * x

+ else if (x >= 0.25 && x <= 1)
+ 8/3 - 8 * x/3

+ else 0

+

}

For our candidate density g(x), let's use the Uniform(0,1) density:

> g.x <- function(x) {

if (x >= 0 && x <= 1)
1

else 0

}

+
+
.
+

Let's set M = 3 because | know from guess and check that f(x) is
never greater than Mg(x), which is 3 for all x € [0, 1].

>M<-3
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Let's do rejection sampling!

1.

2
3.
4

Draw a candidate x. from g(x).
Calculate an acceptance probability o = % for xc.
Draw a value u from the Uniform(0,1) distribution.

Accept x. as a draw from f(x) if &« > u. Otherwise, reject xc
and go back to step 1.

> m <- 10000

> n.draws <- 0

> draws <- c()

> x.grid <- seq(0, 1, by = 0.01)
> while (n.draws < m) {

+

o+ o+ o+ o+ o+

x.c <- runif(1, 0, 1)
accept.prob <- f.x(x.c)/(M * g.x(x.c))
u <- runif(1, 0, 1)
if (accept.prob >= u) {
draws <- c(draws, x.c)
n.draws <- n.draws + 1
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Why Does It Work?

w — )
— Mg(x)

The difference between f(x) and Mg(x) at places with higher
density (i.e. around x = 0.25) is smaller than at places with lower
density (i.e. around x = 0.8), so the acceptance probability at

x = 0.25 is higher and more draws of x = 0.25 are accepted.



There are an infinite number of candidate densities g(x) and
constants M that we can use.

The only difference between them is computation time.

If g(x) is significantly different in shape than f(x) or if Mg(x) is
significantly greater than f(x), then more of our candidate draws
will be rejected.

If f(x) = Mg(x), then all our draws will be accepted.

A version of rejection sampling forms the basis for the
Metropolis-Hastings algorithm that we will use later to sample
from (possibly multivariate) posteriors without knowing the
normalizing constant.
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